Онлайн Электрик > Электронная конференция «Электроэнергетика. Новые технологии»

Дата приоритета: 13.03.2012
Код ГРНТИ: 44.29.37
Сертификат участника: Скачать
Прислать статью

Прогнозирование потерь электроэнергии в распределительных сетях на основе нейронных сетей

Кольцов Ю.В, канд. физ.-мат. наук, доцент кафедры Информационных технологий
Бобошко Е.В., аспирант кафедры Информационных технологий
ФГБОУ ВПО «Кубанский государственный университет»

     Прогнозирование потерь электрической энергии (ЭЭ) в электросетях является одной из важнейших задач в работе энергосбытовых организаций. Это необходимо как для решения задач внутриобъектного технико-экономического регулирования работы сетей, так и для представления отчетной информации вышестоящим организациям. В настоящее время требования к качеству расчета и прогноза потерь ЭЭ постоянно возрастают – это объясняется переходом на рыночную систему отношений в электроэнергетике.
     Наиболее трудным является прогнозирование в сетях 0,4 – 20 кВ. С одной стороны, это связано с большой длиной и разветвленностью схем сетей. Для сетей 0,4 кВ дополнительной сложностью может являться неравномерная загрузка фаз. С другой стороны, слабая оснащенность системами наблюдения обуславливает недостаток информации о режимах и нагрузках [1].
     Расчет потерь ЭЭ в сетях напряжением 0,4 – 20 кВ нормативными методами [2] ведется на основании единственного режима, а также по обобщенным характеристикам нагрузки. Естественно, в такой ситуации погрешность может быть довольно большой. Это заставляет искать новые подходы к решению рассматриваемой задачи. В данной работе предложена методика расчета и прогнозирования потерь ЭЭ, основанная на использовании аппарата искусственных нейронных сетей (ИНС).
     Основной проблемой при расчете потерь ЭЭ при помощи ИНС в сетях 0,4 – 20 кВ является недостаток статистических данных для обучения ИНС. Последнее обусловлено недостаточной оснащенностью подстанций средствами телеизмерений, а также нерегулярной фиксацией параметров режима.
     Для решения проблемы нехватки статистической информации в [3] предложено обучать ИНС, используя данные, полученные в результате математического моделирования работы электрической сети за расчетные периоды. Модель при этом строится на основе известных обобщенных параметров работы сети и характеризующих ее нагрузки в течение продолжительного срока. Полнота и адекватность модели зависит от объема этих начальных данных о характере нагрузок сети. При построении модели режимов есть возможность учитывать также и противоречивую информацию о нагрузках, заключающаяся в поиске среднего значения, в наибольшей степени удовлетворяющего противоречивым параметрам.
     Расчет и прогноз потерь ЭЭ на основе ИНС, обученных на модельных данных, реализован в специально разработанной программе «ИссТП» («Исследование технических потерь»). Программа позволяет задать для данного фидера схему сети, обобщенные параметры о характере нагрузок (как для фидера в целом, так и для отдельных узлов) и на основе введенных данных строит модель режимов. Далее, для генерации обучающей выборки параметры режимов модели изменяются посредством случайных отклонений мощности нагрузки в нагрузочных узлах. Полученная таким образом обучающая выборка, содержащая произвольно задаваемый набор параметров, используются для обучения нейронной сети. Работа с системой «ИссТП» в рамках производственного процесса заключается в расчете потерь посредством построенной нейронной сети для выбранного фидера [3].
     В результате экспериментов было выяснено, что наиболее эффективными архитектурами ИНС для решения задач оценки и прогноза потерь ЭЭ являются многослойный персептрон и сеть каскадной корреляции Фальмана [4]. При этом для многослойного перспетрона наименьшее значение ошибки было достигнуто при обучении посредством последовательного использования метода обратного распространения ошибки и метода сопряженных градиентов.
     Эффективность предложенного подхода по сравнению с нормативными методами подтверждена проведенным численным экспериментом. Была построена модель тестового 24-узлового фидера напряжением 10 кВ, по структуре соединения узлов и их количеству примерно соответствующая реальному фидеру. Характер нагрузки узлов модели соответствовал системе с утренним и вечерним максимумом [5]. В качестве эталонного образца была взята произвольная совокупность режимов сети за расчетный период и соответствующая величина потерь ΔWэталон,%, рассчитанная поэлементным и порежимным суммированием. Расчетный период – 3 месяца (T = 2208 ч.) Также методом средних нагрузок [2] на основе величины отпущенной энергии в сеть Wотп, МВт*ч и числа часов использования максимальной нагрузки Tmax ч., была рассчитана величина ΔWср.нагр.,%. Квадрат коэффициента формы графика нагрузки для метода средних нагрузок рассчитывался по формуле
.

     Наконец, при помощи ИНС, обученной на параметрах модели, было получено значение потерь ΔWИНС,%. Входными параметрами для полученной ИНС служат также Wотп и Tmax, то есть можно говорить об одинаковом объеме начальной информации при расчете потерь ЭЭ как методом средних нагрузок, так и нейросетевым методом. Результаты эксперимента отражены в таблице 1.

Таблица 1 - Сравнение значений потерь при использовании
метода средних нагрузок и нейросетевого метода
N T Tmax Wотп ΔWэталон,% ΔWср.нагр.,% ΔWИНС,%
1 2208 1497,5854 2418,001 5,4385 5,832 5,404
2 2208 1543,8055 2382,932 5,3692 5,6979 5,3587
3 2208 1589,6482 2401,705 5,4075 5,672 5,3801
4 2208 1431,5717 2415,319 5,4162 5,9293 5,4037
5 2208 1496,2859 2394,724 5,3747 5,8287 5,4009

     Как видно из таблицы 1, расчет с использованием ИНС позволяет получить более точные результаты. Значения ΔW, полученные методом средних нагрузок, оказались выше эталонных на 5-9%. Это объясняется тем фактом, что для метода средних нагрузок диапазон случайной погрешности с вероятностью 0,95 составляет ±13 % [1].
     Наряду с более высокой точностью, указанный подход имеет еще одно преимущество, которое заключается в возможности использовать для расчета произвольный набор доступных параметров режима. Набор входных параметров выбирается индивидуально для каждого отдельного фидера в зависимости от имеющейся информации. Естественно, что чем больше объем входных данных, тем более точным будет расчет.
     Кроме того, многократное моделирование режимов сети в зависимости от случайно изменяющихся значений нагрузки узлов позволяет выявить те элементы сети, потери в которых наибольшие. То есть, другими словами, происходит локализация очагов потерь. Полученные данные могут быть использованы для выработки эффективных мероприятий по снижению потерь ЭЭ.
     Таким образом, был разработан подход к расчету и прогнозированию потерь электроэнергии в городских и сельских распределительных сетях напряжением 0,4-20 кВ, основанный на использовании ИНС. При этом для ИНС используются данные полученные моделирование работы сети на основе схемы сети и обобщенных параметрах о характере нагрузки. Было показано, что данный подход позволяет получить более точные значения потерь, нежели расчет нормативными методами, в частности, методом средних нагрузок. Среди других преимуществ предложенного подхода: возможность использовать произвольный набор входных параметров для расчета и локализация очагов потерь по результатам расчета ряда совокупностей режимов.

Список использованных источников

     1. Железко Ю. С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. М.: ЭНАС, 2009. 456 с.: ил.
     2. Инструкция по организации в Министерстве энергетики РФ работы по расчету и обоснованию нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям. Утв. Приказом Минэнерго РФ № 326 от 30.12.2008.
     3. Кольцов Ю.В., Бобошко Е.В. Программная реализация нейросетевого подхода к расчету и прогнозированию потерь электроэнергии // Вестник компьютерных и информационных технологий. 2012. №2.
     4. Fahlman S.E., Lebiere С. The cascade-correlation learning architecture // Advances in NIPS2 / Ed. D. Touretzky. Morgan Kaufmann, 1990. P. 524-532.
     5. Герасименко А.А., Федин В.Т. Передача и распределение электрической энергии: Учебное пособие. Ростов-н/Д.: Феникс; Красноярск: Издательские проекты, 2006. 720 с.


Библиографическая ссылка на статью:
Кольцов Ю.В, Бобошко Е.В. Прогнозирование потерь электроэнергии в распределительных сетях на основе нейронных сетей // Онлайн Электрик: Электроэнергетика. Новые технологии, 2012.–URL: /articles.php?id=3 (Дата обращения: 02.01.2025)



Библиографическая ссылка на ресурс "Онлайн Электрик":
Алюнов, А.Н. Онлайн Электрик : Интерактивные расчеты систем электроснабжения / А. Н. Алюнов. – Москва : Всероссийский научно-технический информационный центр, 2010. – EDN XXFLYN.